车牌识别过程中,牌照颜色的识别依据算法不同,可能在上述不同步骤实现,通常与车牌识别互相配合、互相验证。牌照定位自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定牌照区域是整个识别过程的关键。首先对采集到的视频图像进行大范围相关搜索,找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,后选定一个1佳的区域作为牌照区域,并将其从图像中分离出来。
为了进行车牌识别,需要以下几个基本的步骤:1)牌照定位,定位图片中的牌照位置;2)牌照字符分割,合肥车牌识别,把牌照中的字符分割出来;3)牌照字符识别,把分割好的字符进行识别,终组成牌照号码。实际应用中,车牌识别系统的识别率还与牌照和拍摄密切相关。牌照会受到各种因素的影响,车牌识别系统道闸,如生锈、污损、油漆剥落、字体褪色、牌照被遮挡、牌照倾斜、高亮反光、多牌照、假2牌照等等;实际拍摄过程也会受到环境亮度、拍摄方式、车辆速度等等因素的影响。这些影响因素不同程度上降低了车牌识别的识别率,车牌识别公司,也正是车牌识别系统的困难和挑战所在。为了提高识别率,除了不断地完善识别算法还应该想办法克服各种光照条件,使采集到的图像利于识别。
在实际的车牌识别系统中获取的车牌,停车场车牌识别,往往由于拍摄角度的不同、车牌污损、光照不均等原因造成了二值化后的字符会出现形变、粘连、断裂、细节模糊等情况,这些原因导致了模板匹配在车牌字符识别上的局限性,尤其是停车场车牌识别系统。停车场环境下,车牌图像受到光照的影响较大,为了提高字符识别的准确率,通常在停车场车牌识别系统中很少采用这种算法。
合肥新高l(图)-车牌识别系统道闸-合肥车牌识别由合肥新高电子有限公司提供。行路致远,---。合肥新高电子有限公司致力成为与您共赢、共生、共同前行的---,更矢志成为门禁考勤系统具有竞争力的企业,与您一起飞跃,共同成功!
联系我们时请一定说明是在100招商网上看到的此信息,谢谢!
本文链接:https://tztz304102.zhaoshang100.com/zhaoshang/276378615.html
关键词: